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Abstract

The main purpose of this paper is to investigate the optimal retailer’s replenishment decisions under two levels of
trade credit policy within the economic production quantity (EPQ) framework. We assume that the supplier would offer
the retailer a delay period and the retailer also adopts the trade credit policy to stimulate his/her customer demand to
develop the retailer’s replenishment model under the replenishment rate is finite. Furthermore, we assume that the retai-
ler’s trade credit period offered by supplier M is not shorter than the customer’s trade credit period offered by retailer N

(M P N). Since the retailer cannot earn any interest in this situation, M < N.
Based upon the above arguments, this paper incorporates both Chung and Huang [K.J. Chung, Y.F. Huang, The

optimal cycle time for EPQ inventory model under permissible delay in payments, International Journal of Production
Economics 84 (2003) 307–318] and Huang [Y.F. Huang, Optimal retailer’s ordering policies in the EOQ model under
trade credit financing, Journal of the Operational Research Society 54 (2003) 1011–1015] under above conditions. In
addition, we model the retailer’s inventory system as a cost minimization problem to determine the retailer’s optimal
replenishment decisions. Then three theorems are developed to efficiently determine the optimal replenishment decisions
for the retailer. We deduce some previously published results of other authors as special cases. Finally, numerical exam-
ples are given to illustrate the theorems obtained in this paper. Then, as well as, we obtain a lot of managerial insights
from numerical examples.
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1. Introduction

The traditional economic order quantity (EOQ) model is widely used by practitioners as a decision-mak-
ing tool for the control of inventory. The EOQ model assumes that the retailer’s capitals are unrestricting
and must be paid for the items as soon as the items are received. However, this may not be true. In practice,
the supplier will offer the retailer a delay period, which is the trade credit period, in paying for the amount
of purchasing cost. Before the end of the trade credit period, the retailer can sell the goods and accumulate
revenue and earn interest. A higher interest is charged if the payment is not settled by the end of the trade
credit period. Therefore, it makes economic sense for the retailer to delay the settlement of the replenish-
ment account up to the last moment of the permissible period allowed by the supplier. In a real world, the
supplier often makes use of this policy to promote his commodities.

Goyal [16] established a single-item inventory model under permissible delay in payments. Chand and
Ward [3] analyzed Goyal’s problem [16] under assumptions of the classical economic order quantity model,
and obtained different results. Chung [10,11] developed an alternative approach to determine the economic
order quantity under condition of permissible delay in payments. Shah [28], Aggarwal and Jaggi [1] consid-
ered the inventory model with exponential deterioration rate under the condition of permissible delay in
payments. Chu et al. [9] and Chung et al. [13] also extended Goyal’s model [16] to the case of deterioration.
Liao et al. [24] and Sarker et al. [26] investigated this topic with inflation. Jamal et al. [21] and Chang and
Dye [6] extended this issue with allowable shortage. Chung [12] developed an alternative approach to mod-
ify Shah’s [28] solution. Chang et al. [7] extended this issue with linear trend demand. Chen and Chuang [8]
investigated light buyer’s inventory policy under trade credit by the concept of discounted cash flow. Kim
et al. [23] developed an optimal credit policy to increase wholesaler’s profits with price-dependent demand
functions. Hwang and Shinn [20] modeled an inventory system for retailer’s pricing and lot sizing policy for
exponential deteriorating products under the condition of permissible delay in payment. Jamal et al. [22]
and Sarker et al. [27] addressed the optimal payment time under permissible delay in payment with dete-
rioration. Shawky and Abou-El-Ata [29] investigated the production lot-size model with both restrictions
on the average inventory level and trade-credit policy using geometric programming and Lagrange
approaches. Teng [31] assumed that the selling price not equal to the purchasing price to modify the inven-
tory model under permissible delay in payments. Shinn and Hwang [30] determined the retailer’s optimal
price and order size simultaneously under the condition of order-size-dependent delay in payments. They
assumed that the length of the credit period is a function of the retailer’s order size, and also the demand
rate is a function of the selling price. Arcelus et al. [2] modeled the retailer’s profit-maximizing retail pro-
motion strategy, when confronted with a vendor’s trade promotion offer of credit and/or price discount on
the purchase of regular or perishable merchandise. Chung and Huang [14] extended this problem within the
EPQ framework and developed an efficient procedure to determine the retailer’s optimal ordering policy.
Huang and Chung [19] extended Goyal’s model [16] to cash discount policy for early payment. Salameh
et al. [25] extended this issue to continuous review inventory model. Chang et al. [5] and Chung and Liao
[15] deal with the problem of determining the economic order quantity for exponentially deteriorating items
under permissible delay in payments depending on the ordering quantity. Chang [4] extended this issue to
inflation and finite time horizon. Huang [18] investigated that the unit selling price and the unit purchasing
price are not necessarily equal within the EPQ framework under supplier’s trade credit policy.

All above models assumed that the supplier would offer the retailer a delay period and the retailer could
sell the goods and accumulate revenue and earn interest within the trade credit period. They implicitly
assumed that the customer would pay for the items as soon as the items are received from the retailer. That
is, they assumed that the supplier would offer the retailer a delay period but the retailer would not offer the
trade credit period to his/her customer in previously published results. In most business transactions, this
assumption is debatable. We define this situation as one level of trade credit. In this paper, we adopt the
viewpoint of Huang [17] to modify this assumption to assume that the retailer will adopt the trade credit
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policy to stimulate his/her customer demand to develop the retailer’s replenishment model. We define this
situation as two levels of trade credit. Furthermore, we also adopt Huang’s assumption [17] that the retai-
ler’s trade credit period offered by supplier M is not shorter than the customer’s trade credit period offered
by retailer N (M P N). Since the retailer cannot earn any interest in this situation, M < N.

Another unrealistic assumption in the EOQ model is the infinite replenishment rate. So, we relax this
assumption to finite replenishment rate. That is, the well-known economic production quantity (EPQ)
framework. This viewpoint can be found in Chung and Huang [14]. Under these conditions, this paper
incorporates both Chung and Huang [14] and Huang [17] under above conditions. Then we model the retai-
ler’s inventory system to investigate the optimal retailer’s replenishment decisions under two levels of trade
credit policy within the EPQ framework. Three theorems are developed to efficiently determine the optimal
replenishment decisions for the retailer. We deduce some previously published results of other authors as
special cases. Finally, numerical examples are given to illustrate these theorems obtained in this paper. In
addition, we obtain a lot of managerial insights from numerical examples.

2. Model formulation and the convexity

The following notation and assumptions will be used throughout, most notation and assumptions
adopted are the same as those in Chung and Huang [14] and Huang [17]:

Notation:

D demand rate per year
P replenishment rate per year, P P D

A ordering cost per order
q 1� D

P P 0
c unit purchasing price
s unit selling price, s P c

h unit stock holding cost per item per year excluding interest charges
Ie interest earned per $ per year
Ik interest charged per $ in stocks per year by the supplier
M retailer’s trade credit period offered by supplier in years
N customer’s trade credit period offered by retailer in years
T cycle time in years
TVC(T) annual total relevant cost, which is a function of T

T * optimal cycle time of TVC(T)
Assumptions:

(1) Demand rate, D, is known and constant.
(2) Replenishment rate, P, is known and constant.
(3) Shortages are not allowed.
(4) Time horizon is infinite.
(5) Ik P Ie, M P N.
(6) When T P M, the account is settled at T = M, the retailer pays off all units sold and keeps his/her

profits, and the retailer starts paying for the interest charges on the items in stock with rate Ik. When
T 6 M, the account is settled at T = M and the retailer does not need to pay any interest charge.

(7) The retailer can accumulate revenue and earn interest after his/her customer pays for the amount of
purchasing cost to the retailer until the end of the trade credit period offered by the supplier. That is,
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the retailer can accumulate revenue and earn interest during the period N to M with rate Ie under the
condition of trade credit.

The annual total relevant cost consists of the following elements.

(1) Annual ordering cost ¼ A
T .

(2) Annual stock holding cost (excluding interest charges) (as shown in Fig. 1)
¼
hT ðP � DÞ DT

P

2T
¼ DTh

2
1� D

P

� �
¼ DThq

2
.

(3) According to assumption (6), there are four cases to occur in interest charged for the items kept in
stock per year.

Case 1: M 6 PM
D 6 T , as shown in Fig. 1.
Annual interest payable ¼ cIk
DT 2q

2
� ðP � DÞM2

2

� ��
T ¼ cIkq

DT 2

2
� PM2

2

� ��
T .
Case 2: M 6 T 6 PM
D , as shown in Fig. 2.
Annual interest payable ¼ cIk
DðT �MÞ2

2

" #,
T .
M DT/P Time

Imax

T

Imax=(P-D)(DT/P)

   =DTρ

Inventory Level 

Fig. 1. The total amount of interest payable when PM/D 6 T.

Time

Inventory Level

DT/P               M               T

Imax

DT

Fig. 2. The total amount of interest payable when M 6 T 6 PM/D.
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Case 3: N 6 T 6 M.
In this case, annual interest payable = 0.

Case 4: 0 < T 6 N.
Similar as Case 3, annual interest payable =0.

(4) According to assumption (7), there are four cases to occur in interest earned per year.
Case 1: M 6 PM

D 6 T , as shown in Fig. 3.
Annual interest earned ¼ sIe
ðDN þ DMÞðM � NÞ

2

� ��
T ¼ sIeDðM2 � N 2Þ=2T .
Case 2: M 6 T 6 PM
D .

Similar as Case 1, annual interest earned = sIeD(M2 � N2)/2T.
Case 3: N 6 T 6 M, as shown in Fig. 4.
Annual interest earned ¼ sIe
ðDN þ DT ÞðT � NÞ

2
þ DT ðM � T Þ

� ��
T ¼ sIeDð2MT � N 2 � T 2Þ=2T .
Case 4: T 6 N, as shown in Fig. 5.
Annual interest earned = sIeDT(M � N)/T.

From the above arguments, the annual total relevant cost for the retailer can be expressed as
TVC(T) = ordering cost + stock-holding cost + interest payable � interest earned.
N     M    DT/P

sDT

TimeT

$

Fig. 3. The total amount of interest earned when M 6 PM/D 6 T.

Time

$

N                      T           M

sDT

Fig. 4. The total amount of interest earned when N 6 T 6 M.



T             N           M    

  $

sDT

Time

Fig. 5. The total amount of interest earned when T 6 N.
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TVCðT Þ ¼

TVC1ðT Þ if T P PM
D ; ðaÞ

TVC2ðT Þ if M 6 T 6 PM
D ; ðbÞ

TVC3ðT Þ if N 6 T 6 M ; ðcÞ
TVC4ðT Þ if 0 < T 6 N ; ðdÞ

8>>><
>>>:

ð1Þ
where
TVC1ðT Þ ¼
A
T
þ DThq

2
þ cIkqðDT 2 � PM2Þ=2T � sIeDðM2 � N 2Þ=2T ; ð2Þ

TVC2ðT Þ ¼
A
T
þ DThq

2
þ cIkDðT �MÞ2=2T � sIeDðM2 � N 2Þ=2T ; ð3Þ

TVC3ðT Þ ¼
A
T
þ DThq

2
� sIeDð2MT � N 2 � T 2Þ=2T ð4Þ
and
TVC4ðT Þ ¼
A
T
þ DThq

2
� sIeDðM � NÞ. ð5Þ
Since TVC1ðPM
D Þ ¼ TVC2ðPM

D Þ, TVC2(M) = TVC3(M) and TVC3(N) = TVC4(N), TVC(T) is continuous and
well-defined. All TVC1(T), TVC2(T), TVC3(T), TVC4(T) and TVC(T) are defined on T > 0. Eqs. (2)–(5)
yield
TVC01ðT Þ ¼ �
2A� cM2IkðP � DÞ � sDIeðM2 � N 2Þ

2T 2

� �
þ Dq

hþ cIk

2

� �
; ð6Þ

TVC001ðT Þ ¼
2A� cM2IkðP � DÞ � sDIeðM2 � N 2Þ

T 3
; ð7Þ

TVC02ðT Þ ¼ �
2Aþ cDM2Ik � sDIeðM2 � N 2Þ

2T 2

� �
þ D

hqþ cIk

2

� �
; ð8Þ

TVC002ðT Þ ¼
2Aþ cDM2Ik � sDIeðM2 � N 2Þ

T 3
; ð9Þ

TVC03ðT Þ ¼ �
2Aþ sDN 2Ie

2T 2

� �
þ D

hqþ sIe

2

� �
; ð10Þ

TVC003ðT Þ ¼
2Aþ sDN 2Ie

T 3
> 0; ð11Þ

TVC04ðT Þ ¼
�A

T 2
þ Dhq

2
ð12Þ
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and
TVC004ðT Þ ¼
2A

T 3
> 0. ð13Þ
Eqs. (11) and (13) imply that TVC3(T) and TVC4(T) are convex on T > 0. However, TVC1(T) is convex on
T > 0 if 2A � cM2Ik(P � D) � sDIe(M

2 � N2) > 0 and TVC2(T) is convex on T > 0 if 2A + cDM2Ik �
sDIe(M

2 � N2) > 0. Furthermore, we have TVC01ðPM
D Þ¼TVC02ðPM

D Þ, TVC02ðMÞ¼TVC03ðMÞ and TVC03ðNÞ¼
TVC04ðNÞ. Now, we let a = 2A � cM2Ik(P � D) � sDIe(M

2 � N2), b = 2A + cDM2Ik � sDIe(M
2 � N2),

and easily find b > a. Therefore, Eqs. (1a–d) imply that TVC(T) is convex on T > 0 if a > 0. Then we
can obtain following results.

Theorem 1

(A) If b 6 0, then TVC(T) is convex on (0, M] and concave on [M,1).

(B) If a 6 0 and b > 0, then TVC(T) is convex on (0, PM/D] and concave on [PM/D,1).

(C) If a > 0, then TVC(T) is convex on (0,1).

Let TVC0iðT �i Þ ¼ 0 for all i = 1, 2, 3, 4. We can obtain
T �1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� cM2IkðP � DÞ � sDIeðM2 � N 2Þ

Dqðhþ cIkÞ

s
if a > 0; ð14Þ

T �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ cDM2Ik � sDIeðM2 � N 2Þ

Dðhqþ cIkÞ

s
if b > 0; ð15Þ

T �3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ sDN 2Ie

Dðhqþ sIeÞ

s
ð16Þ
and
T �4 ¼

ffiffiffiffiffiffiffiffiffi
2A

Dhq

s
. ð17Þ
Eqs. (6), (8), (10) and (12) yield that
TVC01
PM
D

� �
¼ TVC02

PM
D

� �
¼
�2Aþ M2

D ½P ðP � DÞhþ cIkðP 2 � D2Þ� þ sDIeðM2 � N 2Þ
2ðPM

D Þ
2

; ð18Þ

TVC02ðMÞ ¼ TVC03ðMÞ ¼
�2Aþ DM 2hqþ sDIeðM2 � N 2Þ

2M2
ð19Þ
and
TVC03ðNÞ ¼ TVC04ðNÞ ¼
�2Aþ DN 2hq

2N 2
. ð20Þ
Furthermore, we let
D1 ¼ �2AþM2

D
½P ðP � DÞhþ cIkðP 2 � D2Þ� þ sDIeðM2 � N 2Þ; ð21Þ

D2 ¼ �2Aþ DM 2hqþ sDIeðM2 � N 2Þ ð22Þ
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and
D3 ¼ �2Aþ DN 2hq. ð23Þ

Then, we have D1 P D2 P D3.
3. Decision rules of the optimal cycle time T*

In this section, we develop efficient decision rules to find the optimal cycle time for the retailer.

3.1. Suppose that b 6 0

When b 6 0, then a < 0, and we can find TVC1(T) is increasing on [PM/D,1) from Eq. (6) and TVC2(T)
is increasing on [M, PM/D ] from Eq. (8). In addition, we can obtain D1 P D2 > 0 from Eqs. (21) and (22).
By the convexity of TVCi(T) (i = 3 and 4), we see
TVC0iðT Þ
< 0 if T < T �i ; ðaÞ
¼ 0 if T ¼ T �i ; ðbÞ
> 0 if T > T �i . ðcÞ

8><
>: ð24Þ
Then, we have the following result to determine the optimal cycle time T*.

Theorem 2. Suppose that b 6 0, then

(A) If D3 P 0, then TVCðT �Þ ¼ TVCðT �4Þ and T � ¼ T �4.
(B) If D3 < 0, then TVCðT �Þ ¼ TVCðT �3Þ and T � ¼ T �3.

Proof. See Appendix A. h
3.2. Suppose that a 6 0 and b > 0

When a 6 0 and b > 0, we can find TVC1(T) is increasing on [PM/D,1) from Eq. (6) and D1 > 0 from
Eq. (21). By the convexity of TVCi(T) (i = 2, 3, 4), we see
TVC0iðT Þ
< 0 if T < T �i ; ðaÞ
¼ 0 if T ¼ T �i ; ðbÞ
> 0 if T > T �i . ðcÞ

8><
>: ð25Þ
Then, we have the following results to determine the optimal cycle time T*.

Theorem 3. Suppose that a 6 0 and b > 0, then

(A) If D3 P 0, then TVCðT �Þ ¼ TVCðT �4Þ and T � ¼ T �4.

(B) If D2 P 0 and D3 < 0, then TVCðT �Þ ¼ TVCðT �3Þ and T � ¼ T �3.
(C) If D2 < 0, then TVCðT �Þ ¼ TVCðT �2Þ and T � ¼ T �2.

Proof. See Appendix B. h
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3.3. Suppose that a > 0

When a > 0, all T �i ði ¼ 1; 2; 3; 4Þ are well-defined. By the convexity of TVCi(T) (i = 1, 2, 3, 4), we see
TVC0iðT Þ
< 0 if T < T �i ; ðaÞ
¼ 0 if T ¼ T �i ; ðbÞ
> 0 if T > T �i . ðcÞ

8><
>: ð26Þ
Then, we have the following results to determine the optimal cycle time T*.

Theorem 4. Suppose that a > 0, then

(A) If D3 P 0, then TVCðT �Þ ¼ TVCðT �4Þ and T � ¼ T �4.

(B) If D2 P 0 and D3 < 0, then TVCðT �Þ ¼ TVCðT �3Þ and T � ¼ T �3.
(C) If D1 > 0 and D2 < 0, then TVCðT �Þ ¼ TVCðT �2Þ and T� ¼ T �2.

(D) If D1 6 0, then TVCðT �Þ ¼ TVCðT �1Þ and T � ¼ T �1.

Proof. See Appendix C. h
4. Special cases

4.1. (I) Chung and Huang’s model [14]

When N = 0 and s = c, let
TVC5ðT Þ ¼
A
T
þ DThq

2
þ cIkq

DT 2

2
� PM2

2

� ��
T � cIe

DM 2

2

� ��
T ;

TVC6ðT Þ ¼
A
T
þ DThq

2
þ cIk

DðT �MÞ2

2

" #,
T � cIe

DM 2

2

� ��
T ;

TVC7ðT Þ ¼
A
T
þ DThq

2
� cIe

DT 2

2
þ DT ðM � T Þ

� ��
T ;

T �5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ DM2cðIk � IeÞ � PM2cIk

Dqðhþ cIkÞ

s
;

T �6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ DM2cðIk � IeÞ

Dðhqþ cIkÞ

s

and
T �7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A
Dðhqþ cIeÞ

s
.
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Then TVC0iðT �i Þ ¼ 0 for i = 5, 6, 7. Eq. (1a–d) will be reduced as follows:
TVCðT Þ ¼
TVC5ðT Þ if T P PM

D ; ðaÞ
TVC6ðT Þ if M 6 T 6 PM

D ; ðbÞ
TVC7ðT Þ if 0 < T 6 M . ðcÞ

8><
>: ð27Þ
Eqs. (27a–c) will be consistent with Eq. (6a–c) in Chung and Huang [14], respectively. In addition, The-
orems 3 and 4 in this paper will be modified as Theorems 2 and 3 in Chung and Huang [14]. Hence, Chung
and Huang [14] will be a special case of this paper.

4.2. (II) Huang’s model [17]

When P ! 1 and s = c, let
TVC8ðT Þ ¼
A
T
þ DTh

2
þ cIkDðT �MÞ2=2T � cIeDðM2 � N 2Þ=2T ;

TVC9ðT Þ ¼
A
T
þ DTh

2
� cIeDð2MT � N 2 � T 2Þ=2T ;

TVC10ðT Þ ¼
A
T
þ DTh

2
� cIeDðM � NÞ;

T �8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ cD½M2ðIk � IeÞ þ N 2Ie�

Dðhþ cIkÞ

s
;

T �9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ cDN 2Ie

Dðhþ cIeÞ

s

and
T �10 ¼
ffiffiffiffiffiffi
2A
Dh

r
.

Then TVC0iðT �i Þ ¼ 0 for i = 8, 9, 10. Eqs. (1a–d) will be reduced as follows:
TVCðT Þ ¼
TVC8ðT Þ if T P M ; ðaÞ
TVC9ðT Þ if N 6 T 6 M ; ðbÞ
TVC10ðT Þ if 0 < T 6 N . ðcÞ

8><
>: ð28Þ
Eqs. (28a–c) will be consistent with Eqs. (1a–c) in Huang [17], respectively. In addition, Theorem 4 in
this paper will be modified as Theorem 1 in Huang [17]. Hence, Huang [17] will be a special case of this
paper.

4.3. (III) Goyal’s model [16]

When P ! 1, N = 0 and s = c, let
TVC11ðT Þ ¼
A
T
þ DTh

2
þ cIk

DðT �MÞ2

2

" #,
T � cIe

DM2

2

� ��
T ;

TVC12ðT Þ ¼
A
T
þ DTh

2
� cIe

DT 2

2
þ DT ðM � T Þ

� ��
T ;



Table
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T �11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ DM2cðIk � IeÞ

Dðhþ cIkÞ

s

and
T �12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A
Dðhþ cIeÞ

s
.

Then TVC0iðT �i Þ ¼ 0 for i = 11, 12. Eq. (1a–d) will be reduced as follows:
TVCðT Þ ¼
TVC11ðT Þ if M 6 T ; ðaÞ
TVC12ðT Þ if 0 < T 6 M . ðbÞ

�
ð29Þ
Eq. (29a,b) will be consistent with Eqs. (1) and (4) in Goyal [16], respectively. Hence, Goyal [16] will be a
special case of this paper. Theorem 4 in this paper can be modified as Theorem 1 in Chung [10]. So Theorem
1 in Chung [10] is a special case of Theorem 4 of this paper.
5. Numerical examples

To illustrate all results obtained in this paper, let us apply the proposed method to efficiently solve the
following numerical examples.

From above Tables 1 and 2, we can observe the optimal cycle time with various parameters of P, N and
s, respectively. The following inferences can be made based in Tables 1 and 2.

(1) When replenishment rate P is increasing, the optimal cycle time for the retailer will be decreasing. The
retailer will order less quantity since the replenishment rate is faster enough. These results are easily
understood and can be found in Tables 1 and 2.
1
timal cycle time with various values of P and N

le 1: Let A = $150/order, D = 2500 units/year, c = $50/unit, s = $75/unit, h = $15/unit/year, Ik = $0.15/$/year, Ie = $0.1/$/
= 0.1year

r) P = 3000 units/year P = 4000 units/year P = 5000 units/year

a b D1 D2 D3 T* a b D1 D2 D3 T* a b D1 D2 D3 T*

>0 >0 >0 <0 <0 T �2 ¼ 0:1109 >0 >0 >0 >0 <0 T �3 ¼ 0:0968 <0 >0 >0 >0 <0 T �3 ¼ 0:0906
>0 >0 >0 <0 <0 T �2 ¼ 0:1178 >0 >0 >0 <0 <0 T �2 ¼ 0:1028 <0 >0 >0 >0 <0 T �3 ¼ 0:0962
>0 >0 <0 <0 <0 T �1 ¼ 0:1442 >0 >0 >0 <0 <0 T �2 ¼ 0:1131 >0 >0 >0 <0 <0 T �2 ¼ 0:1058

2
timal cycle time with various values of P and s

le 2: Let A = $150/order, D = 2500 units/year, c = $50/unit, h = $15/unit/year, Ik = $0.15/$/year, Ie = $0.1/$/year,
.1 year, N = 0.05 year

it) P = 3000 units/year P = 4000 units/year P = 5000 units/year

a b D1 D2 D3 T* a b D1 D2 D3 T* a b D1 D2 D3 T*

>0 >0 <0 <0 <0 T �1 ¼ 0:1342 >0 >0 >0 <0 <0 T �2 ¼ 0:1095 >0 >0 >0 <0 <0 T �2 ¼ 0:1025
>0 >0 >0 <0 <0 T �2 ¼ 0:1178 >0 >0 >0 <0 <0 T �2 ¼ 0:1028 <0 >0 >0 >0 <0 T �3 ¼ 0:0962
>0 >0 >0 <0 <0 T �2 ¼ 0:1095 >0 >0 >0 >0 <0 T �3 ¼ 0:0963 <0 >0 >0 >0 <0 T �3 ¼ 0:091
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(2) When the customer’s trade credit period offered by retailer N is increasing, the optimal cycle time for
the retailer will be increasing. It implies that the retailer will order more quantity to get more interest
earned offered by the supplier to compensate the loss of interest earned from longer trade credit per-
iod offered to his/her customer. Table 1 shows this computed result.

(3) In Table 2, we can find that the optimal cycle time for the retailer will be decreasing when the unit
selling price s is increasing. This result implies that the retailer will order less quantity to take the ben-
efits of the trade credit more frequently.
6. Summary and conclusions

This paper incorporates both Chung and Huang [14] and Huang [17] to investigate the optimal retailer’s
replenishment decisions under two levels of trade credit policy within the economic production quantity
(EPQ) framework to reflect the realistic business situations. Theorems 2–4 help the retailer in accurately
and quickly determining the optimal replenishment decisions under minimizing the annual total relevant
cost. When the customer’s trade credit period offered by the retailer equals to zero and the unit purchasing
price is equal to the unit selling price, the inventory model discussed in this paper is reduced to Chung and
Huang [14]. When the replenishment rate is infinite and the unit purchasing price is equal to the unit selling
price, the inventory model discussed in this paper is reduced to Huang [17]. When the customer’s trade
credit period offered by the retailer equals to zero, the replenishment rate is infinite and the unit purchasing
price is equal to the unit selling price, the inventory model discussed in this paper is reduced to Goyal [16].
Finally, numerical examples are used to illustrate all results obtained in this paper. In addition, we obtain a
lot of managerial insights from numerical examples.

A future study will further incorporate the proposed model into more realistic assumptions, such as
probabilistic demand, allowable shortages, multi-supplier, multi-retailer, multi-customer etc.
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Appendix A. Proof of Theorem 2

(A) If D3 P 0, then TVC03ðNÞ ¼ TVC04ðNÞP 0. Eqs. (24a–c) imply that
(i) TVC3(T) is increasing on [N,1).

(ii) TVC4(T) is decreasing on ð0; T �4� and increasing on ½T �4;N �.
Combining (i), (ii) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �4� and increasing on
½T �4;1Þ. Consequently, T � ¼ T �4.

(B) If D3 < 0, then TVC03ðNÞ ¼ TVC04ðNÞ < 0. Eq (24a–c) imply that

(i) TVC3(T) is decreasing on ½N ; T �3� and increasing on ½T �3;1Þ.

(ii) TVC4(T) is decreasing on (0, N].
Combining (i), (ii) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �3� and increasing
on ½T �3;1Þ. Consequently, T � ¼ T �3.

Incorporating the above arguments, we have completed the proof of Theorem 2.
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Appendix B. Proof of Theorem 3

(A) If D3 P 0 then D2 P 0, therefore TVC02ðMÞ ¼ TVC03ðMÞP 0 and TVC03ðNÞ ¼ TVC04ðNÞP 0.
Eqs. (25a–c) imply that

(i) TVC2(T) is increasing on [M,1).
(ii) TVC3(T) is increasing on [N, M].

(iii) TVC4(T) is decreasing on ð0; T �4� and increasing on ½T �4;N �.
Combining (i)–(iii) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �4� and increasing
on ½T �4;1Þ. Consequently, T � ¼ T �4.

(B) If D2 P 0 and D3 < 0, then TVC02ðMÞ ¼ TVC03ðMÞP 0 and TVC03ðNÞ ¼ TVC04ðNÞ < 0. Eqs. (25a–c)

imply that

(i) TVC2(T) is increasing on [M,1).
(ii) TVC3(T) is decreasing on ½N ; T �3� and increasing on ½T �3;M �.

(iii) TVC4(T) is decreasing on (0, N].
Combining (i)–(iii) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �3� and increasing
on ½T �3;1Þ. Consequently, T � ¼ T �3.

(C) If D2 < 0 then D3 < 0, therefore TVC02ðMÞ ¼ TVC03ðMÞ < 0 and TVC03ðNÞ ¼ TVC04ðNÞ < 0.

Eqs. (25a–c) imply that

(i) TVC2(T) is decreasing on ½M ; T �2� and increasing on ½T �2;1Þ.
(ii) TVC3(T) is decreasing on [N, M].

(iii) TVC4(T) is decreasing on (0, N].
Combining (i)–(iii) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �2� and increasing
on ½T �2;1Þ. Consequently, T � ¼ T �2.

Incorporating the above arguments, we have completed the proof of Theorem 3.
Appendix C. Proof of Theorem 4

(A) If D3 P 0 then D1 > 0, D2 P 0, therefore TVC01ðPM
D Þ ¼ TVC02ðPM

D Þ > 0, TVC02ðMÞ ¼ TVC03ðMÞP 0 and
TVC03ðNÞ ¼ TVC04ðNÞP 0. Eqs. (26a–c) imply that

(i) TVC1(T) is increasing on ½PM
D ;1Þ.

(ii) TVC2(T) is increasing on ½M ; PM
D �.

(iii) TVC3(T) is increasing on [N, M].
(iv) TVC4(T) is decreasing on ð0; T �4� and increasing on ½T �4;N �.

Combining (i)–(iv) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �4� and increasing
on ½T �4;1Þ. Consequently, T � ¼ T �4.

(B) If D2 P 0 and D3 < 0 then D1 > 0, therefore TVC01ðPM
D Þ ¼ TVC02ðPM

D Þ > 0, TVC02ðMÞ ¼ TVC03ðMÞP 0

and TVC03ðNÞ ¼ TVC04ðNÞ < 0. Eqs. (26a–c) imply that

(i) TVC1(T) is increasing on ½PM
D ;1Þ.

(ii) TVC2(T) is increasing on ½M ; PM
D �.

(iii) TVC3(T) is decreasing on ½N ; T �3� and increasing on ½T �3;M �.
(iv) TVC4(T) is decreasing on (0, N].

Combining (i)–(iv) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �3� and increasing
on ½T �3;1Þ. Consequently, T � ¼ T �3.

(C) If D1 > 0 and D2 < 0 then D3 < 0, therefore TVC01ðPM
D Þ ¼ TVC02ðPM

D Þ > 0, TVC02ðMÞ ¼ TVC03ðMÞ < 0

and TVC03ðNÞ ¼ TVC04ðNÞ < 0. Eqs. (26a–c) imply that
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(i) TVC1(T) is increasing on ½PM
D ;1Þ.

(ii) TVC2(T) is decreasing on ½M ; T �2� and increasing on ½T �2; PM
D �.

(iii) TVC3(T) is decreasing on [N, M].
(iv) TVC4(T) is decreasing on (0, N].

Combining (i)–(iv) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �2� and increasing
on ½T �2;1Þ. Consequently, T � ¼ T �2.

(D) If D1 6 0 then D2 < 0 and D3 < 0, therefore TVC01ðPM
D Þ ¼ TVC02ðPM

D Þ 6 0, TVC02ðMÞ ¼ TVC03ðMÞ < 0

and TVC03ðNÞ ¼ TVC04ðNÞ < 0. Eqs. (26a–c) imply that

(i) TVC1(T) is decreasing on ½PM
D ; T �1� and increasing on ½T �1;1Þ.

(ii) TVC2(T) is decreasing on ½M ; PM
D �.

(iii) TVC3(T) is decreasing on [N, M].
(iv) TVC4(T) is decreasing on (0, N].

Combining (i)–(iv) and Eqs. (1a–d), we have that TVC(T) is decreasing on ð0; T �1� and increasing
on ½T �1;1Þ. Consequently, T � ¼ T �1.

Incorporating the above arguments, we have completed the proof of Theorem 4.
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